Мультиплексоры и демультиплексоры презентация. Применение мультиплексоров и демультиплексоров

МУЛЬТИПЛЕКСОРЫ/ ДЕМУЛЬТИПЛЕКСОРЫ.

Мультиплексоры.

Назначение и принцип работы.

Мультиплексор является устройством, которое осуществляет выборку одного из нескольких входов и подключает его к своему выходу. Мультиплексор имеет несколько информационных входов (D 0 , D 1 , ...), адресные входы (А 0 А 1 , ...), вход для подачи стробирующего сигнала С и один выход Q. На рис. 6.26,ф показано символическое изображение мультиплексора с четырьмя информационными входами.

Каждому информационному входу мультиплексора присваивается номер, называемый адресом. При подаче стробирующего сигнала на вход С мультиплексор выбирает один из входов, адрес которого задается двоичным кодом на адресных входах, и подключает его к выходу.

рис 6.26

Таким образом, подавая на адресные входы адреса различных информационных входов, можно передавать цифровые сигналы с этих входов на выход Q. Очевидно, число информационных входов n инф и число адресных входов n адр связаны соотношением n инф = 2 nадр.

Таблица 6.13

Адресные
входы

Стробирующий
сигнал

Выход

Функционирование мультиплексора определяется табл. 6.13. При отсутствии стробирующего сигнала (C = 0) связь между информационными входами и выходом отсутствует (Q = 0). При подаче стробирующего сигнала (C = l) на выход передается логический уровень того из информационных входов D i , номер которого i в двоичной форме задан на адресных входах. Так, при задании адреса A l A 0 = ll 2 = 3 10 на выход Q будет передаваться сигнал информационного входа с адресом 3 10 , т. е. D 3 .

(6.24)

По этой таблице можно записать следующее логическое выражение для выхода Q:

Построенная по этому выражению принципиальная схема мультиплексора показана на рис. 6.26,б.

В тех случаях, когда требуется передавать на выходы многоразрядные входные данные в параллельной форме, используется параллельное включение мультиплексоров по числу разрядов передаваемых данных.

Использование мультиплексоров для синтеза комбинационных устройств.

Мультиплексоры могут быть использованы для синтеза логических функций. При этом число используемых в схеме элементов (корпусов интегральных микросхем) может быть значительно уменьшено.

Логическое выражение мультиплексора (6.24) содержит члены со всеми комбинациями адресных переменных. Следовательно, если требуется синтезировать функцию трех переменных f(x 1 , x 2 , х 3), то две из этих переменных (например, x 1 , х 2) могут быть поданы на адресные входы А 1 , и А 0 , и третья x 3 - на информационный вход.

Например, пусть требуется синтезировать функцию, заданную табл. 6.14. Логическое выражение функции

Рассматривая переменные x l , х 2 в качестве адресных переменных получим табл. 6.15, из которой видно, что мультиплексор на выходе Q реализует заданную логическую функцию. Принципиальная схема показана на рис. 6.27.

Таблица 6.14

Таблица 6.15

Очевидно, на четырехвходовых мультиплексорах может быть синтезирована любая функция трех переменных, на восьмивходовых мультиплексорах - любая функция четырех переменных и т. д.

При синтезе комбинационных схем мультиплексоры могут быть использованы совместно с элементами некоторого базиса. Пусть общее число переменных функций n. Тогда, если мультиплексор имеет n адр адресных входов, то на них подаются n адр переменных, а на его информационные входы подаются функции n-n адр переменных.

рис 6.27

рис 6.28

рис 6.29

Пусть, например, требуется синтезировать логическую функцию четырех переменных с использованием четырехвходового мультиплексора. Если адресными переменными являются x 1 , х 2 , то на информационные входы мультиплексора должны подаваться функции переменных х 3 и x 4 , определяемые показанными в табл. 6.16 областями таблицы Вейча. Внутри каждой очерченной для информационных входов области таблицы Вейча проводится минимизация обычными методами, после чего строятся схемы, формирующие подаваемые на информационные входы мультиплексора функции.

Покажем этот прием на реализации функции, заданной табл. 6.17.

При подаче переменных x 1 и х 2 на адресные входы мультиплексора на его информационные входы должны подаваться D 0 = 1; D 1 = 0; D 2 = x 3 . 4 , D 3 = 4 . Реализующая заданную функцию схема показана на рис. 6.28.

Следует иметь в виду, что синтезируя логическое устройство с использованием мультиплексора, необходимо также построить вариант схемы без использования мультиплексора. Затем сравнением полученных вариантов определить, какой из вариантов оказывается лучшим по числу используемых в схеме корпусов интегральных схем.

Мультиплексорное дерево.

Максимальное число входов мультиплексоров, выполненных в виде интегральных схем, равно восьми. Если требуется построить мультиплексорное устройство с большим числом входов, можно объединить мультиплексоры в схему так называемого дерева. Такое мультиплексорное дерево, построенное на четырехвходовых мультиплексорах, показано на рис. 6.29. Схема состоит из четырех мультиплексоров первого уровня с адресными переменными x 1 , х 2 и мультиплексора второго уровня с адресными переменными x 3 , x 4 . Мультиплексорное устройство имеет 16 входов, разбитых на четверки, которые подключены к отдельным мультиплексорам первого уровня. Мультиплексор второго уровня, подключая к общему выходу устройства выходы отдельных мультиплексоров первого уровня, переключает четверки входов. Внутри же четверки требуемый вход выбирается мультиплексором первого уровня. По такой схеме, используя восьмивходовые мультиплексоры, можно построить мультиплексорное устройство, имеющее 64 входа.

Таблица 6.16

Таблица 6.17

В первом и втором уровнях мультиплексорного дерева можно использовать мультиплексоры с разным числом входов. Если в первом уровне такого дерева используются мультиплексоры с числом адресных переменных n адр1 , а во втором - с числом переменных n адр2 , то общее число входов мультиплексорного дерева будет равно n инф = 2 nадр1 + nадр2 , а число мультиплексоров в схеме составит 2 nадр2 + 1 .

Мультиплексорные деревья могут использоваться не только для переключения каналов, но и для синтеза логических функций.

Демультиплексоры.

Демультиплексор имеет один информационный вход и несколько выходов. Он представляет собой устройство, которое осуществляет коммутацию входа к одному из выходов, имеющему заданный адрес (номер). На рис. 6.30 показано символическое изображение демультиплексора с четырьмя выходами. Функционирование этого демультиплексора определяется табл. 6.18.

Объединяя мультиплексор с демультиплексором, можно построить устройство, в котором по заданным адресам один из входов подключается к одному из выходов (рис. 6.31). Таким образом, может быть выполнена любая комбинация соединений входов с выходами.

Например, при комбинации значений адресных переменных x l = l, x 2 = 0, x 3 = 0, x 4 = 0 вход D 2 окажется подключенным к выходу Y 0 .

Использование демультиплексора может существенно упростить построение логического устройства, имеющего несколько выходов, на которых формируются различные логические функции одних и тех же переменных.

Заметим, что если на вход демультиплексора подавать константу D = 1, то на выбранном в соответствии с заданным адресом выходе будет лог. 1, на остальных выходах - лог. 0. При этом по выполняемой функции демультиплексор превращается в дешифратор.

Таблица 6.18

Адресные
входы

Выходы

A 1

A 0

Y 0

Y 1

Y 2

Y 3

рис 6.30

рис 6.31

рис 6.32

При необходимости иметь большое число выходов может быть построено демультиплексорное дерево. На рис. 6.32 показано такое дерево, построенное на демультиплексорах с четырьмя выходами. Демультиплексор первого уровня подключает вход D к определенному демультиплексору второго уровня, демультиплексоры второго уровня выбирают нужный выход, куда и передается сигнал с входа D.

Мультиплексор можно использовать в качестве универсального логического элемента (УЛЭ) для реализации логических функций.

В УЛЭ каждому набору аргументов соответствует передача на выход одного из сигналов настройки. Если этот сигнал есть значение функции на данном наборе аргументов, то УЛЭ реализует заданную функцию.

Разным функциям будут соответствовать разные коды настройки.

Алфавитом настройки является {0, 1} - настройка осуществляется константами 0 и 1.

Если число аргументов превышает число адресных входов УЛЭ, то необходимо расширять алфавит настроечных сигналов путем переноса аргументов в число сигналов настройки.

Перенос одного из аргументов в число сигналов настройки позволяет реализовать функции с числом аргументов на единицу больше, чем при настройке константами.

По пути расширения алфавита сигналов настройки можно идти и дальше. При этом понадобятся дополнительные логические схемы, воспроизводящие остаточные функции, которые будут зависеть более чем от одного аргумента.

Например, если в сигналы настройки перевести два аргумента, то дополнительные логические схемы будут двухвходовыми.

Мультиплексоры,

демультиплексоры

Использование мультиплексора в качестве универсального логического элемента для реализации логических функций

Мультиплексоры, демультиплексоры

Демультиплексоры

Выполняют функцию, обратную функции мультиплексора – передают данные из одного входного канала в один из нескольких каналов-приемников.

Демультиплексор имеет один информационный вход x , n информационных выходов, …, и k управляющих (адресных) входов, …, .

Обычно, также как и мультиплексоров, .

Мультиплексоры, демультиплексоры

Двоичный код A, поступающий на адресные входы, определяет один из n выходов, на который передается значение переменной с информационного входа, т. е. демультиплексор реализует следующие функции:

Мультиплексоры, демультиплексоры

Пример демультиплексора, имеющего

информационных выходов, и адресных входов,

Мультиплексоры,

демультиплексоры

Функция демультиплексора легко реализуется с помощью дешифратора, если его вход разрешения EN использовать в качестве информационного входа демультиплексора, а входы декодируемого кода – в качестве адресных входов. В этом случае, при активном значении сигнала на входе EN избирается выход, соответствующий коду, поданному на адресные входы.

Поэтому ИС ДШ, имеющих разрешающий вход, как это отмечалось ранее, называют

Мультиплексоры, демультиплексоры

Термином мультиплексирование

называют процесс передачи данных от нескольких источников по общему каналу, а устройство, осуществляющее на передающей стороне операцию сведения данных в один канал, принято называть

мультиплексором.

Подобное устройство способно осуществлять временное разделение сигналов, поступающих от нескольких

источников, и передавать их в канал

(линию) связи друг за другом в

Мультиплексоры, демультиплексоры

На приемной стороне требуется выполнить обратную операцию –

поступивших по каналу связи в последовательные моменты времени, по своим приемникам. Эту операцию выполняет демультиплексор .

Совместное использование мультиплексора и демультиплексора позволяет выполнить передачу данных

Мультиплексоры,

демультиплексоры

Совместное использование мультиплексора и демультиплексора для передачи данных от n источников к n приемникам по общей линии

Лабораторная работа.

Мультиплексоры и демультиплексоры

Цель работы: практическое освоение принципов построения мультиплексоров и демультиплексоров и экспериментальное их исследование на лабораторном стенде.

1.1 Мультиплексоры

Мультиплексор – это комбинационная многовходовая схема с одним выходом. Входы мультиплексора подразделяются на информационные Д 0, Д 1, …, Д n-1 и управляющие (адресные) А 0, А 1, …, А k-1. Обычно 2k = n, где k и n – число адресных и информационных входов соответственно. Двоичный код, поступающий на адресные входы, определяет (выбирает) один из информационных входов, значение переменной с которого передается на выход y , т. е. мультиплексор реализует функцию:

Таблица функционирования, описывающая работу мультиплексора, имеющего, например, n = 4 информационных (Д 0, Д 1, Д 2, Д 3) и k = 2 адресных (А 0, А 1) входов, представлена в табл. 1.

Вариант схемной реализации мультиплексора “4-1” (“четыре в один”, т. е. коммутирующего данные от одного из четырех входов на единственный выход) и его условное графическое изображение представлены на рис. 1.

Здесь мультиплексор построен как совокупность двухвходовых конъюкторов данных (их число равно числу информационных входов), управляемых выходными сигналами дешифратора, дешифрирующего двоичный адресный код. Выходы конъюкторов объединены схемой ИЛИ.

https://pandia.ru/text/77/497/images/image005_121.gif" width="272 height=23" height="23"> (2)

Из (2) следует, что при любом значении адресного кода все слагаемые, кроме одного равны нулю. Ненулевое слагаемое равно Д i , где i – значение текущего адресного кода.

В соответствии с этим соотношением строятся реальные схемы мультиплексоров, одна из которых для мультиплексора “четыре в один” приведена на рис. 2. Как правило, схема дополняется входом разрешения работы – Е (показан пунктирной линией). При отсутствии разрешения работы (Е=0) выход у становится нулевым и не зависит от комбинации сигналов на информационных и адресных входах мультиплексора.

Мультиплексоры 4-1, 8-1, 16-1 выпускаются в составе многих серий цифровых интегральных схем и имеют буквенный код КП. Например, К555КП1 – мультиплексор 2-1 (в данном корпусе размещаются четыре мультиплексора), К555КП12 – мультиплексор 4-1 (в одном корпусе размещаются два мультиплексора) и т. д.

В тех случаях, когда функциональные возможности ИС мультиплексоров не удовлетворяют разработчиков по числу информационных входов, прибегают к их каскадированию с целью наращивания числа входов до требуемого значения. Наиболее универсальный способ наращивания размерности мультиплексора состоит в построении пирамидальной структуры, состоящей из нескольких мультиплексоров. При этом первый ярус схемы представляет собой столбец, содержащий столько мультиплексоров, сколько необходимо для получения нужного числа информационных входов. Все мультиплексоры этого столбца коммутируются одним и тем же адресным кодом, составленным из соответствующего числа младших разрядов общего адресного кода. Старшие разряды адресного кода используются во втором ярусе, мультиплексор которого обеспечивает поочередную работу мультиплексоров первого яруса на общий выход.

Пирамидальная схема, выполняющая функцию мультиплексора “16-1” и построенная на мультиплексорах “4-1”, показана на рис. 3.

1.2. Демультиплексоры

Демультиплексор – схема, выполняющая функцию, обратную функции мультиплексора, т. е. это комбинационная схема, имеющая один информационный вход (Д ), n информационных выходов (у 0, у 1, …, у n-1) и k управляющих (адресных) входов (А 0, А 1, …, А k-1). Обычно, также как и мультиплексоров, 2k = n. Двоичный код, поступающий на адресные входы, определяет один из n выходов, на который передается значение переменной с информационного входа (Д ), т. е. демультиплексор реализует следующие функции:

0 " style="border-collapse:collapse;border:none">

А 0, А 1

у 0 у 1 у 2 у 3

А 0, А 1

у 0 у 1 у 2 у 3

Уравнения, описывающие работу демультиплексора:

https://pandia.ru/text/77/497/images/image015_70.gif" width="100" height="24 src="> (4)

Схема демультиплексора, построенная по данным уравнениям и его графическое изображение представлены на рис. 4.

Рис. 4. Схема демультиплексора "1-4" (а)

и его условное изображение (б)

Функция демультиплексора легко реализуется с помощью дешифратора, если его вход “Разрешение” (Е) использовать в качестве информационного входа демультиплексора, а входы 1, 2, 4 … - в качестве адресных входов демультиплексора А 0, А 1, А 2, … Действительно, при активном значении сигнала на входе Е избирается выход, соответствующий коду, поданному на адресные входы. Поэтому ИС дешифраторов, имеющих разрешающий вход, иногда называют не просто дешифраторами, а дешифраторами-демультиплексорами (например, К155ИД4, К531ИД7 и др.).

1.3 Применение мультиплексоров и демультиплексоров

1.3.1. Термином “мультиплексирование” называют процесс передачи данных от нескольких источников по общему каналу, а устройство, осуществляющее на передающей стороне операцию сведения данных в один канал, принято называть мультиплексором. Подобное устройство способно осуществлять временное разделение сигналов, поступающих от нескольких источников, и передавать их в канал (линию) связи друг за другом в соответствии со сменой кодов на своих адресных входах.

На приемной стороне обычно требуется выполнить обратную операцию – демультиплексирование, т. е. распределение порций данных, поступивших по каналу связи в последовательные моменты времени, по своим приемникам. Эту операцию выполняет демультиплексор. Совместное использование мультиплексора и демультиплексора для передачи данных от n источников к n приемникам по общей линии иллюстрирует рис. 5. (В общем случае число источников данных не равно числу приемников).

https://pandia.ru/text/77/497/images/image018_62.gif" alt="Подпись:" align="left" width="253" height="123 src=">

0 " style="border-collapse:collapse;border:none">

№ бригады

(вариант)

Размерность

Мультиплексора

Тип (базис) ЛЭ

ОФПН(И, ИЛИ, НЕ)

ОФПН(И, ИЛИ, НЕ)

2.2. Исследовать работу (снять таблицу истинности) ИС мультиплексора К531КП2.

2.3. На основе ИС мультиплексора К531КП2 спроектировать и испытать схему, реализующую логическую функцию, соответствующую вашему варианту (табл. 5).

Таблица 5

№ бригады

(вариант)

Логическая функция

Равнозначность двух переменных

Неравнозначность двух переменных

3. Контрольные вопросы

1. Дайте определение мультиплексора и демультиплексора.

2. Перечислите применения мультиплексоров и демультиплексоров.

3. В чем суть каскадирования мультиплексоров? Объясните как на основе ИС мультиплексоров “8-1” спроектировать мультиплексор на 16, 32, и т. д. входов.

4. На основе ИС мультиплексора “8-1” спроектируйте схему, реализующую логическую функцию:

4.1. четности трехразрядного слова (четности числа единиц в трехразрядном слове);

4.2. нечетности трехразрядного слова;

4.3. у=х 1х 2+х 1х 3+х 2х 3.

5. Объясните как с помощью демультиплексора можно осуществить преобразование последовательного кода в параллельный.

6. Объясните как с помощью мультиплексора можно осуществить преобразование параллельного кода в последовательный.

7. Данные от одного из четырех источников должны последовательно передаваться по одной линии одному из трех приемников. Спроектируйте схемы и объясните работу ЦУ передающей и приемной сторон, обеспечивающих такую возможность.

Мультиплексоры и демультиплексоры

Мультиплексоры и демультиплексоры относятся к классу комбинационных устройств, которые предназначены для коммутации потоков данных в линиях связи по заданным адресам. Большая часть данных в цифровых системах передается непосредственно по проводам и проводникам печатных плат. Часто возникает необходимость в передаче информационных двоичных сигналов (или аналоговых в аналого-цифровых системах) от источника сигналов к потребителям. В некоторых случаях нужно передавать данные на большие расстояния по телефонным линиям, коаксиальным и оптическим кабелям. Если бы все данные передавались одновременно по параллельным линиям связи, общая длина таких кабелей была бы слишком велика и они были бы слишком дороги. Вместо этого данные передаются по одному проводу в последовательной форме и группируются в параллельные данные на приемном конце этой единственной линии связи. Устройства, используемые для подключения одного из источников данных с заданным номером (адресом) к линии связи, называются мультиплексорами. Устройства, используемые для подключения линии связи к одному из приемников информации с указанным адресом, называются демультиплексорами. Параллельные данные одного из цифровых устройств с помощью мультиплексора могут быть преобразованы в последовательные информационные сигналы, которые передаются по одному проводу. На выходах демультиплексора эти последовательные входные сигналы могут быть снова сгруппированы в параллельные данные.

1. Мультиплексоры

Теоретические сведения

В цифровых устройствах часто возникает необходимость пере­дать цифровую информацию от m различных устройств к n приёмникам через канал общего пользования. Для этого на входе канала, устанавливают устройство М (рис.1.1), называемое мультиплексором, которое согласно коду адреса Аm подключает к каналу один из m («1 из m») источников информации, а на выходе канала устройство DM (демультиплексор) обеспечивает передачу информации к приемнику, имеющему цифровой адрес Аn.

То есть мультиплексор – это комбинационное устройство, предназначенное для подключения одного из n входных сигналов к общему выходу в соответствии с кодом адреса. Применительно к компьютерной схемотехнике: мультиплексор – это функциональный узел цифровой системы, предназначенный для коммутации (переключения) информации от одного из m адресуемых входов на общий выход. Номер конкретной входной линии, подключаемой к выходу, в каждый такт машинного времени определяется адресным кодом А 0 ,…А k -1 . Связь между числом информационных m и адресных k входов определяется соотношением m2 k . Таким образом, мультиплексор реализует управляемую передачу данных от нескольких входных линий в одну выходную.

Принцип работы мультиплексора (и демультиплексора) наглядно демонстрирует рис. 1.1.

Функция мультиплексоров в поле типа ЛЭ записывается буквами MUX (multiplexor). Условное графическое обозначение (УГО) мультиплексора показано на рис.1.2.

Мультиплексоры применяются для коммутации отдельных линий или групп линий (шин), преобразования параллельного кода в последовательный, реализации логических функций нескольких переменных, построения схем сравнения, генераторов кодов. Применительно к мультиплексорам пользуются так же термином «селекторы» данных.

Мультиплексоры включают в себя дешифратор адреса. Сигналы дешифратора управляют логи­ческими вентилями, разрешая передачу информации только через один из них. Логика функционирования мультиплексора для m=4 описывается табл.1.1, где x 0 ,...,x 3 – выходы независимых источников информации, а переменные А 0 , А 1 являются адресными, т.е. представляют в двоичном коде номер информационного входа, подключаемого в данный момент к выходу Y. Тогда функционирование мультиплексора описывается таблицей истинности табл. 1.1:

х 3 х 2 х 1 х 0

В терминах булевой алгебры функция мультиплексора имеет вид:

Простейший мультиплексор, реализующий заданное табл.1.1 преоб­разование, может быть построен на логических элементах И, ИЛИ в сочетании с дешифратором адреса. В такой структуре сигнал на выходе мультиплексора Y устанавливается с задержкой адресных сигналов в логических ступенях дешифратора (рис.1.3,а).

Быстродействие мультиплексора можно увеличить, ес­ли совместить дешифратор адреса и информационные вентили (рис.1.3,б).

Стробирующий вход С (на рис.1.3,б) используется для исключения несанкционированного подключения к выходу случайных входов на время смены адресов. Короткий запирающий импульс (строб-импульс) обеспечивает отключение выхода от входов на время переадресации.

Рассмотрим некоторые схемотехнические применения мультиплексо­ров. Вполне очевидным является использование мультиплексора в ка­честве преобразователя параллельного m-разрядного двоичного ко­да в последовательный. Для этого достаточно на входы мультиплексо­ра подать параллельный код и затем последовательно изменять код адреса в требуемой последовательности. При этом во избежание появления ложного сигнала на выходе мультиплексора строб-импульс на время переключения адреса должен отключать выход от входов.


Мультиплексоры могут быть использованы для построения логи­ческих функций нескольких переменных в виде дизъюнктивной нормальной формы. Пусть логическая функция определена пятью независимыми пере­менными. Если их подать на адресные входы, соответствующего мульти­плексора на 2 5 = 32 информационных входа (мультиплексорное дерево), то для получения на выходе Q любой функции пяти переменных достаточно подать логические единицы на информационные входы, адрес которых совпадает с минтермами синтезируемой функции. На остальные входы необходимо подать логические нули, исключив тем самым соответствующие комбинации из выходной функции. Такой метод приемлем, если функция m переменных содержит близкое к 2 m количество минтермов, в противном случае схема получается избыточной.

Мультиплексор может быть использован более эффективно, если аргументы функций подавать не только на адресные, но и на информационные входы. Для этого аргументы синтезируемой функции f(х 1 …,х m) разделяются на информационные вхо­ды D i и адресные входы (А j) так, чтобы последними управляли пере­менные, наиболее часто входящие в минтермы функции.

В интегральном исполнении мультиплексоры выпускают на четыре, восемь или шестнадцать входов. Каскадирование мультиплексоров позволяет реализовать коммутацию произвольного числа входных линий на базе серийных микросхем мультиплексора меньшей разрядности. Пример построения схемы мультиплексоров на 16 входов на основе типовых 4-входовых мультиплексоров показан на рисунке 1. Такая схема называется мультиплексорным деревом.

Алгоритм синтеза устройства, реализующего логическую функцию на основе мультиплексора, включает в себя сле­дующие операции:

    представить функцию в виде СДНФ;

    для данной СДНФ заполнить карту Карно (Вейча);

    на карте Карно (Вейча) выделить области по количеству информационных входов мультиплексора. Количество строк m и столбцов n в таких областях должно удовлетворять условию: m,n=2 k , где k=0,1,2,…Переменные, сохраняющие свое значение в пределах выделенных областей, являются адресными, а остальные – информационными;

    подать адресные переменные любым способом на адресные входы выбранного (или заданного) мультиплексора, определив таким образом однозначное соответствие адресных областей определенному информационному входу;

    для каждой области найти МДНФ/МКНФ относительно информационных переменных, для управления информационными входами;

    с помощью тождественных преобразований МДНФ/МКНФ привести к виду, удобному для совместной реализации;

    реализовать схемы по каждому информационному входу мультиплексора в выбранном элементном базисе.

Приведем пример построения мультиплексора, реализующего некоторую функцию:

Для данной функции построим карту Карно:

2. Пусть задан мультиплексор с 4 информационными входами (2 входа – адресные). На карте Карно выделим адресные области. Для выбранного варианта разбиения на адресные области адресными стали переменные X 1 , X 3 . Их можно двумя способами подать на адресные входы: A 1 =X 1, A 0 =X 3 либо A 1 =X 3 , A 0 =X 1 (способ подачи не имеет значения). Тогда адресным областям соответствуют информационные входы D 0 , D 1 , D 2, D 3 (показаны на карте Карно). Адресные области определяют функции управления соответствующим информационным входом мультиплексора.

    Минимизируем функции управления:

D 1 =X 0 , D 2 =X 0 ,

Реализуем полученные функции (рис. 1.5):

Исследование мультиплексора

Цель работы – исследование логики функционирования, статических и динамических параметров комбинационных устройств на примере четырехвходового мультиплексора, построенного на элементах Шеффера.

Принципиальная схема четырехвходового мультиплексора приведена на рис. 1.6.

Рабочее задание

    Собрать исследуемую схему мультиплексора (рис. 1.7). На схеме генераторы прямоугольных импульсов G1, G2, G3, G4 имитируют источники входных данных, а 2-разрядный двоичный счетчик на триггерах Тг1, Тг2 обеспечивает периодическую смену адресов мультиплексора.

Методические указания

    В схеме (рис. 1.7) использовать модели идеальных компонентов или серии ЛЭ, заданные преподавателем.

    Подать сигналы от генераторов с частотами f 0, f 1 , f 2 , f 3 , f 4 – по заданию преподавателя, источник напряжения V1 = U ип.

    При нормальном функционировании мультиплексора на его выходе должны сформироваться серии импульсов с частотами f 1 , f 2 , f 3 , f 4 (вход осциллоскопа В). Для исследования переходных процессов в мультиплексоре отключите генератор G0 от входа триггера Тг1 и подключите его ко входам R триггеров.. Определите частоту статические и динамические параметры сигнала на выходе мультиплексора.

    Подключите генератор G0 ко входу триггера Тг1, а входы Logic Analyzer - в точки схемы, как показано на рис. 1.7.

Контрольные вопросы

    Что такое мультиплексор и для чего мультиплексоры используются?

    Приведите уравнение, описывающее работу четырехвходового мультиплексора.

    Объясните назначение информационных входов.

    Для чего в мультиплексорах используется стробирующий вход?

    От чего зависит быстродействие мультиплексора?

    Для чего применяют каскадирование мультиплексоров?

2. Демультиплексоры

Теоретические сведения

Демультиплексором называется функциональный узел компьютера, предназначенный для коммутации (переключения) сигнала единственного информационного входа D на один из n информационных выходов. Номер выхода, на который в каждый такт машинного времени подается значение входного сигнала, определяется адресным кодом A 0 ,A 1 …,A m-1 . Адресные входы m и информационные выходы n связаны соотношением n2 m. В качестве демультиплексора может быть использован дешифратор DC. При этом информационный сигнал подается на вход разрешения Е (от англ. enable – разрешение). Стробируемый демультиплексор с информационным входом D, адресными входами А 1 , А 0 и стробирующим входом С показан на рисунке 2.1. Демультиплексор выполняет функцию, обратную функции мультиплексора. Применительно к мультиплексорам и демультиплексорам пользуются так же термином «селекторы» данных.

Демультиплексоры используют для коммутации отдельных линий и многоразрядных шин, преобразования последовательного кода в параллельный. Как и мультиплексор, демультиплексор включают в себя дешифратор адреса. Сигналы дешифратора управляют логи­ческими вентилями, разрешая передачу информации только через один из них (рис.1.1)

Логика функционирования демультиллексора для случая n=4 иллюстрируется табл. 2.1, где y0,…,у3 – входы приемников информации.

Адрес А 1 А 0

Выход Y 0 Y 1 Y 2 Y 3

Рабочее задание

    Собрать исследуемую схему мультиплексора (рис. 2.4). На схеме генератор прямоугольных импульсов G1 имитирует источник входных данных, а 2-разрядный двоичный счетчик на триггерах Тг1, Тг2 обеспечивает периодическую смену адресов мультиплексора. (рис. 2.4).

Методические указания

Контрольные вопросы

    Что такое демультиплексор и для чего демультиплексоры используются?

    Приведите уравнения, описывающие работу демультиплексора на четыре выхода.

    Объясните назначение адресных входов.

    Для чего в демультиплексорах используется стробирующий вход?

    От чего зависит быстродействие демультиплексора?

    Для чего применяют каскадирование демультиплексоров?

Литература

    Элементы цифровой схемотехники: Учеб. пособие/ В.П.Сигорский, В.И. Зубчук, А.Н. Шкуро. –Киев: УМК ВО, 1990.

    Бабіч Н.П., Жуков І.А. Комп’ютерна схемотехніка. Київ 200

    Зубчук В.И., Сигорский В.П., Шкуро А.Н. Справочник по цифровой схемотехнике. – К.: “Техніка”, 1990.

  1. Волоконно-оптические сети и системы связи

    Конспект >> Коммуникации и связь

    Разветвители и ответвители, оптические мультиплексоры /демультиплексоры , оптические фиксированные аттенюаторы, оптические... оптические компенсаторы хроматической дисперсии, оптические мультиплексоры /демультиплексоры и фильтры. Перечисленные устройства, ...

  2. Постановка лабораторной работы по курсу волоконно-оптические системы связи

    Реферат >> Промышленность, производство

    Оптические разветвители…………………………………………………………..25 3.1 Мультиплексоры и демультиплексоры …………………………………..25 3.2 Делители оптической мощности... оптическими несущими и называются мультиплексорами демультиплексорами соответственно). Вторые используются для...

  3. Компютерна схемотехніка (2)

    Курсовая работа >> Информатика

    МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ ЧЕРНІВЕЦЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ЮРІЯ ФЕДЬКОВИЧА Факультет комп’ютерних наук Кафедра комп’ютерних систем та мереж Курсова робота Комп’ютерна схемотехніка 2007 Лінійні дешифратори. Функції алгебри логіки, ...

Мультиплексором — называют комбинационное устройство, обеспечивающее передачу в желаемом порядке цифровой информации, поступающей по нескольким входам на один выход. Мультиплексоры обозначают через MUX (от англ. multiplexor), а также через MS (от англ. multiplex or selector).

Схематически можно изобразить в виде коммутатора, обеспечивающего подключение одного из нескольких входов (их называют информационными) к одному выходу устройства. Кроме информационных входов в мультиплексоре имеются адресные входы и, как правило, разрешающие (стробирующие). Сигналы на адресных входах определяют, какой конкретно информационный канал подключен к выходу. Если между числом информационных входов n и числом адресных входов m действует соотношение n = 2 m , то такой мультиплексор называют полным. Если n< 2 m , то мультиплексор называют неполным.

Разрешающие входы используют для расширения функциональных возможностей мультиплексора. Они используются для наращивания разрядности мультиплексора, синхронизации его работы с работой других узлов. Сигналы на разрешающих входах могут разрешать, а могут и запрещать подключение определенного входа к выходу, т. е. могут блокировать действие всего устройства.

Функционирование двухвходового мультиплексора

Рассмотрим функционирование двухвходового мультиплексора (2 →1), который условно изображен в виде коммутатора, а состояние его входов Х 1 Х 2 и выхода Y приведено в таблице (рис. 3.41).

Исходя из таблицы, можно записать следующее уравнение:

Y = X 1 A + X 2 A

На рис. 3.42 показаны реализация такого устройства и его условное графическое обозначение.


Основой данной схемы являются две схемы совпадения на элементах И, которые при логическом уровне «1» на одном из своих входов повторяют на выходе то, что есть на другом входе.

Если необходимо расширить число входов, то используют каскадное включение мультиплексоров. В качестве примера рассмотрим мультиплексор с четырьмя входами (4 → 1), построенный на основе мультиплексоров (2 → 1).

Схема и таблица состояний такого мультиплексора приведены на рис.3.43.



Мультиплексоры являются универсальными логическими устройствами, на основе которых создают различные комбинационные и последовательностные схемы. Мультиплексоры могут использоваться в делителях частоты, триггерных устройствах, сдвигающих устройствах и др. Мультиплексоры часто используют для преобразования параллельного двоичного кода в последовательный. Для такого преобразования достаточно подать на информационные входы мультиплексора параллельный двоичный код, а сигналы на адресные входы подавать в такой последовательности, чтобы к выходу поочередно подключались входы, начиная с первого и кончая последним.

Мультиплексор как устройство сдвига

Рассмотрим пример использования мультиплексоров для реализации так называемого комбинационного устройства сдвига, обеспечивающего сдвиг двоичного, числа по разрядам. Принцип функционирования данного устройства понятен из схемы устройства и таблицы состояний его входов и выходов (рис. 3.44).


В обозначении мультиплексоров используют две русские буквы КП, например, промышленностью выпускаются такие мультиплексоры, как К155КП1, К531КШ8, К561КПЗ, К555КП17 и др.

Демультиплексором называют устройство, в котором сигналы с одного информационного входа, поступают в желаемой последовательности по нескольким выходам в зависимости от кода на адресных шинах. Таким образом, демультиплексор в функциональном отношении противоположен мультиплексору. Демультиплексоры обозначают через DMX или DMS.

Если соотношение между числом выходов n и числом адресных входов m определяется равенством n= 2 m , то такой демультиплексор называется полным, при n< 2 m демультиплексор является неполным.

Функционирование демультиплексора с двумя выходами

Рассмотрим функционирование демультиплексора с двумя выходами, который условно изображен в виде коммутатора, а состояние его входов и выходов приведено в таблице (рис. 3.45).


Из этой таблицы следует: Y 1 =X·А Y 2 = X·А т. е. реализовать такое устройство можно так, как показано на рис. 3.46.



Для наращивания числа выходов демультиплексора используют каскадное включение демультиплексоров. В качестве примера (рис. 3.47) рассмотрим построение демультиплексоров с 16 выходами (1 → 16) на основе демультиплексоров с 4 выходами (1 → 4).


При наличии на адресных шинах А 0 и А 1 нулей информационный вход X подключен к верхнему выходу DМХ 0 и в зависимости от состояния адресных шин А 2 и А 3 он может быть подключен к одному из выходов DMX 1 . Так, при А 2 = А 3 = 0 вход X подключен к Y 0 . При А 0 = 1 и А 1 = 0 вход X подключен к DMX 2 , в зависимости от состояния А 2 и А 3 вход соединяется с одним из выходов Y 4 − Y 7 и т.д.

Функции демультиплексоров

Функции демультиплексоров сходны с функциями дешифраторов. Дешифратор можно рассматривать как демультиплексор, у которого информационный вход поддерживает напряжение выходов в активном состоянии, а адресные входы выполняют роль входов дешифратора. Поэтому в обозначении как дешифраторов, так и демультиплексоров используются одинаковые буквы — ИД. Выпускают дешифраторы (демультиплексоры) К155ИДЗ, К531ИД7 и др.

При использовании КМОП-технологии можно построить двунаправленные ключи, которые обладают возможностью пропускать ток в обоих направлениях и передавать не только цифровые, но и аналоговые сигналы. Благодаря этому можно строить мультиплексоры-демультиплек-соры, которые могут использоваться либо как мультиплексоры, либо как демультиплексоры. Мультиплексоры-демультиплексоры обозначаются через MX. Среди выпускаемых мультиплексоров-демультиплексоров можно выделить такие, как К564КП1, К590КП1. Мультиплексоры-демультиплексоры входят в состав серий К176, К561, К591, К1564.